Note

Stereoselective and mild method for the synthesis of C-D-glucosylarenes in high yield*

MENG-SHEN CAI[†] AND DONG-XU QIU 'College of Pharmacy, Beijing Medical University, Beijing 100083 (People's Republic of China) (Received July 18th, 1988; accepted for publication in revised form, February 15th, 1989)

2,3,4,6-Tetra-O-benzyl-1-O-trifluoroacetyl- α -D-glucopyranose (1) is shown to react smoothly with aryl ethers in the presence of a Lewis acid in dichloromethane at room temperature to afford C-D-glucosylarenes with high stereo-selectivity and in very high yield.

Much attention has been focused on the stereoselective synthesis of C-glycosyl compounds, not only for the preparation of naturally occurring examples 1b , but also for the homologation of sugars to serve as chiral templates for more-complex synthetic targets 2 . For this purpose, it is important to select both the leaving group at the anomeric position and the activator in the alkylation. Many reports on the synthesis of 1-allyl 1-C-glycosyl derivatives have appeared recently $^{3-5}$, but only Schmidt *et al.* 6 and Williams *et al.* 7 , using O-glycosyl-trichloroacetimidates and pyridyl thioglycosides, respectively, have synthesized C-glycosylarenes stereoselectively. We have found that D-glucosyl 4-nitrobenzoate 8 and 3,5-dinitrobenzoate 1a react with aryl ethers to give C- β -D-glucosylarenes in most cases. We now report a highly stereoselective and mild method for the synthesis of C-D-glucosylarenes from 1 in high yields.

RESULTS AND DISCUSSION

Compound 1 reacted with aryl ethers to afford generally the β anomers. The yield of C-D-glucosylarene depended on the reactivity of the aryl ether and the Lewis acid. The best catalyst was BF₃·Et₂O, but anhydrous AlCl₃ gave a low yield because HCl in AlCl₃ cleaves the benzyl groups in 1 giving many by-products. Anhydrous ZnBr₂ is a weak Lewis acid and the yields were very low, even at extended reaction-times. Interestingly, when 1 reacted with 1,3-bis(trimethyl-silyl)oxybenzene in the presence of BF₃·Et₂O, the α anomer was the only product,

^{*}Studies On C-Glycosyl Compounds XIV, for part XIII see ref. 1a.

To whom correspondence should be addressed.

126 NOTE

TABLE I
C-D-GLUCOSYLARENES FROM TETRA- O -BENZYL- α -D-GLUCOSYL TRIFLUOROACETATE (1)

Aryl ethers	Lewis acid	Reaction conditions (~25°)	tions arene		Ratio of anomers $(\alpha; \beta)$	
$R = 1,3,5-(MeO)_3$	BF ₃ ·Et ₂ O	CH ₂ Cl ₂ , 5 min	$R = 2,4,6-(MeO)_3$	99	0:1	
	AlCl ₃	CH ₂ Cl ₂ , 5 min		91	0:1	
	ZnBr ₂	CH ₂ Cl ₂ , 5 min	(3)	61	0:1	
$R = 1.3-(MeO)_2$	BF ₃ ·Ět ₂ O	CH_2Cl_2 , 5 min	$R = 2,4-(MeO)_2$ (4)	81	0:1	
Anisole	$BF_3 \cdot Et_2O$	CH ₂ Cl ₂ , 5 min	R = 4-MeO(5,6)	86	1:4	
$R = 1,3-(Me_3SiO)_2$	BF3Et2O	CH ₂ Cl ₂ , 5 min	$R = 2.4-(OH)_2$	95	1:0	
	$Al\tilde{C}l_3$	CH_2Cl_2 , 5 min	- (),	85	1:2.3	
	$ZnBr_2$	CH_2Cl_2 , 15 min	(7,8)	67	0:1	

and if anhydrous AlCl₃ or ZnBr₂ was used, an α,β mixture was obtained in which the β anomer preponderated. Anisole also gave a 1:4 α,β anomeric mixture.

In the synthesis of allyl C-glycosyl compounds, the α anomer is always the main product. The allyl group is rather small and the difference in stability between the α and β anomers is very small. Consequently, the oxocarbonian ion derived from 1 by the SN1 mechanism should preferentially accept nucleophiles from the α (axial) side through operation of the anomeric effect⁹. In the case of C-glucosylarenes, the β anomer is much more stable than the α anomer, and it may be supposed that the stability of the C-glucosylarene controls the stereochemistry of the reaction rather than the anomeric effect, as in the C-glucosylation of 1,3,5-trimethoxybenzene, 1,3-dimethoxybenzene and anisole. If the aryl ether group is large, as with 1,3-di(trimethylsilyloxy)benzene, it becomes difficult for it to approach C-1 of the oxocarbonium ion and so the anomeric effect again controls the reaction pathway. In this instance, the α anomer is obtained instead of the β anomer, as shown by Schmidt et al.6 when D-glucosyl trichloroacetimidate was treated with the same nucleophile. We have also found 1,3-di(trimethylsilyloxy)benzene reacted with 1 using anhydrous AlCl₃ or ZnBr₂ as the catalyst to give an anomeric mixture in which the β anomer preponderated.

The determination of the configuration of benzylated C-glycosylarenes is very difficult, and Schmidt et al.⁶ assigned the configuration of compounds 3, 4 and 8 after debenzylation. We found by using ¹H-¹H shift-correlation spectra that the two benzylic protons of compounds 5 and 6 were not equivalent and coupled each

NOTE 127

other to give two doublets. In addition to these doublets, there was another doublet which coupled with a quartet (J 4.8 Hz, H-1' and H-2' of the α anomer) and a triplet (J 10 Hz, H-1' and H-2' of the β anomer). The ¹³C-n.m.r. chemical shifts of compound **6** were readily assigned by ¹H-¹³C shift-correlation spectroscopy and following the usual sequence of ¹³C-n.m.r. chemical shifts of sugar-ring carbons of glucopyranosides. After studying the ¹³C-n.m.r. spectra of several pairs of benzylated C-glucosylarenes, we found that the chemical shifts ($\delta_{C'}$) of the corresponding carbon atoms of the sugar ring in the β anomers were almost the same and shifts for the α anomers were similar to those of the β anomers. If there were *ortho*-substituted groups in the aglycon, $\delta_{C-1'}$ and $\delta_{C-2'}$ of the α and β anomers became small. However, the difference of $\delta_{C'}$ for the corresponding carbon atoms of the sugar ring, between the α and β anomers, was very obvious. The $\delta_{C'}$ values of the β anomers were 3-6 p.p.m. larger than those of the α anomers. This pattern may also be seen in the O-glucopyranosides and used to determine the configuration of benzylated C-p-glucopyranosylarenes¹⁰; see Table II.

EXPERIMENTAL

General methods. — M.p.s are uncorrected. Spectra were recorded with the following instruments; 1 H-n.m.r., Varian XL-300 (300 MHz) and Varian 400 (400 MHz); 1 H- 1 H and 1 H- 13 C shift-correlation spectra, Varian 400; 13 C-n.m.r., JEOL JMN-FX 100 (100 MHz); mass spectra, VG 20-250 g.l.c.-m.s., and VG ZAB GC g.l.c.-m.s. The 1 H-n.m.r. spectra were recorded with Me₄Si as the internal standard and 13 C-n.m.r. with Me₂SO- d_6 as solvent and internal standard (39.6 p.p.m.). Preparative t.l.c. was performed on silica gel (10-40 μ m).

2,3,4,6-Tetra-O-benzyl-1-O-trifluoroacetyl- α -D-glucopyranose (1). — A mixture of 0.5 g (0.93 mmol) of 2,3,4,6-tetra-O-benzyl- α -D-glucopyranose¹¹, 0.15 g of CF₃CO₂Na and 3 mL of (CF₃CO)₂O was heated to reflux for 30 min with stirring. After cooling, the mixture was diluted with CH₂Cl₂ (10 mL), and then filtered through silica gel (60–80 μ m). The silica gel was washed with CH₂Cl₂ (2 × 10 mL), and the combined organic solution was concentrated *in vacuo* to give 1 (0.65 g, 100%) as a colorless syrup; ¹H-n.m.r. (300 MHz, CDCl₃): δ 6.45 (d, 1 H, J 3.4 Hz,

TABLE II $^{13}\text{C-n.m.r.}$ Chemical shifts (δ) of sugar ring carbons of \emph{C} -d-glucosylarenes

Compound	C-1	C-2	C-3	C-4	C-5	C-6
3	75.2	78.7	86.5	78.2	80.2	69.1
4	74.3	78.8	86.2	78.0	83.2	68.9
5	77.8	72.4	80.5	72.2	80.0	69.9
6	80.0	78.4	85.8	78.3	83.4	69.9
7	73.8	77.5	81.2	74.0	79.4	68.9
8	74.8	78.4	86.9	78.4	82.6	69.4

H-1), 3.60-5.50 (m, 15 H, sugar-ring protons and benzylic CH₂), and 7.10-7.60 (m, aryl protons). This compound was not purified further and used directly in the following reaction.

C-Glucosylarenes (general method). — Two drops of $BF_3 \cdot Et_2O$ (or 10 mg of anhydrous $AlCl_3$ or 10 mg of anhydrous $ZnBr_2$) was added to a mixture of 58.5 mg (0.093 mmol) of 1 and 0.186 mmol of aryl ether in 2 mL of CH_2Cl_2 with stirring at room temperature under nitrogen. After 5 min (or 15 min for anhydrous $ZnBr_2$), 10 mL of 20% HCl was added and the mixture was extracted with ether. The extract was dried (MgSO₄) and evaporated *in vacuo* to give the crude product, which was purified by preparative t.l.c. using the following eluents: A, 7:3 cyclohexane—ether; or B, 4:1 cyclohexane—EtOAc.

1-(2,3,4,6-Tetra-O-benzyl-β-D-glucopyranosyl)-2,4,6-trimethoxybenzene⁶ (3). — The crude product was purified by preparative t.l.c. (eluent A) to give a yellow suryp; $[\alpha]_D^{25} + 1.0^\circ$ (c 8.0, Me₂CO); ¹H-n.m.r. (300 MHz, Me₂SO-d₆): δ 3.75, 3.78, 3.79 (3s, 3 × 3 H, 3 OCH₃), 4.02 (d, 1 H, J 12 Hz, H-1'), 3.40–5.00 (m, 15 H, sugar-ring protons and benzylic CH₂), 6.25, 6.28 (2s, 2 H, H-3,5), and 6.80–7.50 (m, 20 H, aryl protons).

2,4-Dimethoxy-1-(2,3,4,6-tetra-O-benzyl-β-D-glucopyranosyl)benzene⁶ (4). — From the preparative t.l.c. (eluent A), the product was obtained as a yellow syrup, $[\alpha]_D^{25}$ +25.9° (c 1.4, Me₂CO); ¹H-n.m.r. (300 MHz, Me₂SO-d₆): δ 3.75, 3.78 (2s, 2 × 3 H, 2 OCH₃), 4.00 (d, 1 H, J 10 Hz, H-1'), 3.50–5.00 (m, 15 H, sugar-ring protons and benzylic CH₂), and 6.50–7.50 (m, 23 H, aryl protons).

4-Methoxy-1-(2,3,4,6-tetra-O-benzyl-α-D-glucopyranosyl)benzene (5). — This was obtained by preparative t.l.c. (eluent A), as a yellow syrup, $[\alpha]_2^{D^5} + 16.0^\circ$ (c 2.0, Me₂CO); ¹H-n.m.τ. (400 MHz, Me₂SO- d_6): δ 3.78 (s, 3 H, OCH₃), 5.16 (d, 1 H, J 4.8 Hz, H-1'), 3.90 (q, 1 H, J 4.8 Hz, H-2'), 3.00–5.00 (m, 15 H, sugar-ring protons and benzylic CH₂), and 6.90–7.60 (m, 24 H, aryl protons); m/z (e.i.): 630.2963 (M⁺).

Anal. Calc. for $C_{41}H_{42}O_6$: C, 78.07; H, 6.72. Found: C, 77.82; H, 6.69.

4-Methoxy-1-(2,3,4,6-tetra-O-benzyl-β-D-glucopyranosyl)benzene (6). — This was obtained by preparative t.l.c. (eluent A) as colorless crystals, m.p. 108.5–109.0°, $[\alpha]_D^{2^5}$ –5.3° (c 0.8, Me₂CO): ¹H-n.m.r. (400 MHz, Me₂SO-d₆): δ 3.75 (s, 3 H, OCH₃), 4.42 (d, 1 H, J 10 Hz, H-1'), 3.50 (t, 1 H, J 10 Hz, H-2'), 3.50–5.50 (m, 15 H, sugar-ring protons and benzylic CH₂), and 6.50–3.50 (m, 24 H, aryl protons).

Anal. Calc. for C₄₁H₄₂O₆: C, 78.07; H, 6.72. Found: C, 78.26; H, 6.89.

2,4-Dihydroxy-1-(2,3,4,6-tetra-O-benzyl-α-D-glucopyranosyl)benzene (7). — This was obtained by preparative t.l.c. (eluent B) as a yellow syrup, $[\alpha]_{\rm D}^{2.5}$ +53.0° (c 1.4, Me₂CO); ¹H-n.m.r. (300 MHz, Me₂SO-d₆: δ 5.70 (d, 1 H, J 4.0 Hz, H-1'), 3.50–5.00 (m, 15 H, sugar-ring protons and benzylic CH₂), and 6.50–7.50 (m, 23 H, aryl protons); m/z (e.i.): 632.2776 (M⁺).

Anal. Calc. for $C_{40}H_{40}O_7$: C, 75.93; H, 6.37. Found: C, 75.74; H, 6.33.

2,4-Dihydroxy-1-(2,3,4,6-tetra-O-benzyl- β -D-glucopyranosyl)benzene⁶ (8). — This was obtained by preparative t.l.c. (eluent B) as colorless crystals, m.p. 141.5—

NOTE 129

142.0°, $[\alpha]_D^{25}$ -15.5° (c 0.9, Me₂CO); ¹H-n.m.r. (300 MHz, Me₂SO- d_6): δ 4.28 (d, 1 H, J 9.0 Hz, H-1'), 3.50-5.00 (m, 15 H, sugar-ring protons and benzylic CH₂), and 6.30-7.50 (m, 23 H, aryl protons).

REFERENCES

- 1 (a) M. S. CAI AND D. X. QIU, Synth. Comm., in press; (b) S. HANESSIAN AND A. G. PERNET, Adv. Carbohydr. Chem. Biochem., 33 (1976) 111-188.
- 2 T. D. INCH, Tetrahedron, 40 (1984) 3161-3213.
- 3 A. HOSOMI, Y. SAKATA, H. SAKURAI, Tetrahedron Lett., 25 (1984) 2383-2386.
- 4 A. GIANNIS AND K. SANDHOFF, Tetrahedron Lett., 26 (1985) 1479-1482.
- 5 M. D. LEWIS, J. K. CHA, Y. KISHI, J. Am. Chem. Soc., 104 (1982) 4976-4978.
- 6 R. R. SCHMIDT AND M. HOFFMANN, Tetrahedron Lett., 23 (1982) 409-412.
- 7 R. M. WILLIAMS AND A. O. STEWART, Tetrahedron Lett., 24 (1983) 2715-2718.
- 8 M. S. CAI AND D. X. QIU, Bull. Chin. Chem. Soc., in press.
- 9 T. OGAWA, A. G. PERNET, S. HANESSIAN, Tetrahedron Lett., (1973) 3543-3546.
- 10 S. M. CHEN, D. X. QIU, Z. LIN, M. S. CAI, in preparation.
- 11 P. W. Austin, F. E. Hardy, J. G. Buchanan, J. Baddiley, J. Chem. Soc., (1964) 2128.